Su Suntan Capacitance

Suntan Technology Company Limited
---All kinds of Capacitors

This is a measure of a capacitor's ability to store charge. A large capacitance means that more charge can be stored. Capacitance is measured in farads, symbol F. However 1F is very large, so prefixes are used to show the smaller values.

Three prefixes (multipliers) are used, µ (micro), n (nano) and p (pico):

  • µ means 10-6 (millionth), so 1000000µF = 1F
  • n means 10-9 (thousand-millionth), so 1000nF = 1µF
  • p means 10-12 (million-millionth), so 1000pF = 1nF

Capacitor values can be very difficult to find because there are many types of capacitor with different labelling systems!

There are many types of capacitor but they can be split into two groups, polarised and unpolarised. Each group has its own circuit symbol.

Su Suntan Introduce What is A Capacitor

Suntan Technology Company Limited
---All kinds of Capacitors

A capacitor is a passive electronic component that storesenergy in theform of an electrostatic field. In its simplest form, a capacitorconsists of twoconducting plates separated by an insulating material called thedielectric. Thecapacitance is directly proportional to the surface areas of the plates, andis inverselyproportional to the separation between the plates. Capacitance alsodepends on thedielectric constant of the substance separating the plates.

The standard unit of capacitance is the farad, abbreviatedF. Thisis a large unit; more common units are the microfarad, abbreviated µF (1 µF =10-6F) and the picofarad, abbreviated pF (1 pF = 10-12 F).

Capacitors can be fabricated onto integrated circuit (IC)chips. They are commonly used in conjunction with transistors in dynamic random access memory (DRAM). The capacitors helpmaintain thecontents of memory. Because of their tiny physical size, thesecomponents have lowcapacitance. They must be recharged thousands of times per second or theDRAM willlose its data.

Large capacitors are used in the power supplies of electronicequipment ofall types, including computers and their peripherals. In these systems,thecapacitors smooth out the rectified utility AC, providing pure, battery-likeDC.

Su Suntan Small Bubbles, Big Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

In many ways capacitors are the hidden saving grace of the electronics world. They play an essential role in smoothing switch transitions by storing and releasing a small amount of energy over short time scales. Although inductors can play the same role, I think it is safe to say that without small, accurately valued capacitors the modern electronics industry would be a very different beast. Essentially, capacitors store charge, which means that the amount of charge they can store is related to the area available to put said charges. Over recent years, the development of better control over small scale structuring has lead to large increases in capacitance in relatively small packages. The increases have been such that there have been some thoughts of putting these supercapacitors to work as battery replacements in applications where high currents are required.

On that front we can present some good news. Last month Science reported that scientists had observed an unexpectedly large increase in capacitance in some nanoporous materials. A capacitor at its most simple is a couple of parallel metal plates, where the capacitance increases with the size of the plates and as the two plates get closer together. Unfortunately, increasing the area without too much thought is a quick way to find yourself ordering another 19 inch rack for your capacitors, while sparks, ashes, and electrical fires come from the plates getting too close together. However, an alternative is to roughen the surface and include an electrolyte, which effectively replaces the second plate. This increases the surface area of the plates without increasing the volume. The development of nanoporous materials has lead to dramatic increases in the surface area of capacitors and hence a reasonably sized supercapacitor. Exploring nanoporous carbon for capacitance is nothing new, however, previous methods had very little control over the pore size. Here the researchers developed a different fabrication process that allows them to control the pore size to within 0.05nm. The process begins with a carbide substrate, which is a metal plus carbon atoms. They then etch the metal away by reacting it with chlorine, leaving the surrounding carbon structure intact. Since the amount of metal in a carbide depends on the which metal is used, the pore size can be controlled quite accurately by a good choice of metal and the amount of etching performed.

Once the pore size reduced to that below the electrolyte ion plus surrounding solvent molecules , the effect of the pores was reduced. This is because the increased surface area only works if the distance between the electrolyte and plate remains constant and once the pores get too small the charges on the inside of the pore are too far from the nearest electrolyte ion. However, a further decrease in pore size saw the capacitance increase again. It turns out that when the material is so porous, many of the carbon atoms are just barely hanging on. As a result they can move around quite a bit, which allows the electrolyte to squeeze in. The resulting tight fit between the two means that along with an effective increase in surface area, the gap between the two plates is also decreased. Both of these factors increase the capacitance.

I would say the future looked foamy but my glass is empty.

Suntan Tell You Another Take on Desalination: Use a Capacitor

Suntan Technology Company Limited
----All Kinds of Capacitors

Desalination could dramatically help the looming shortage with water. The problem is the membrane.

Right now, desalinting seawater largely revolves around pressurizing water and forcing it through a membrane to purify it. The process takes a lot of energy and hence a lot of cost. Desalinating seawater can cost as much as 50 cents a liter.

A collection of private companies and research institutes in Spain have begun to experiment with capacitive deionization for purifying seawater. In this, two electrodes would be placed in a tank. The ions (i.e., salt particles) would be drawn to one electrode. The ions would absorb the ions, which could then be released in a regeneration cycle. Capacitive purification was considered in the past, but the materials were too expensive. So who knows, it might work now.

Expect to see a number of desalination come to the fore in the next few years. Policy makers and the public love the idea and areas of Australia, Africa and China are already suffering through prolonged droughts.

Some of the more interesting ideas out there:

Porifera: A spin-out from Lawrence Livermore National Labs, the company wants to make a desalination membrane out of carbon nanotubes. The company claims it won’t take much energy to purify water in this way and the membrane can’t get fouled. Salt and other bad stuff can’t fit through the pore/openings in the nanotubes.

NanoH2O: Grew out of a research project at UCLA and so far has raised $20 million in two rounds. It has a membrane embedded with nanoparticles that repels salts and lets water pass. By exploiting chemical attraction, NanoH2O reduces the amount of mechanical-induced pressure required for reverse osmosis: The company claims it can process 70 percent more water with 20 percent less power than conventional reverse osmosis plants.

Quos: A highly secretive Chicago company founded by Chinbay Fan and funded by Khosla Ventures. One thing Quos can’t keep secret: patent applications for a system that desalinates and purifies with graphite porous electrodes.

“The apparatus is capable of removing ionized and non-ionized organic compounds, inorganic ions, particulates and bacteria from wastewater streams in a single unit to produce potable water. Porous carbon-based electrodes function as impurities filters to remove particulate matter, such as ash, sand and high molecular weight compounds, as electrodes to concentrate and remove ionic species, and as adsorbents to remove organic materials and bacteria from the wastewater stream,” says patent application 11/724534.

Stonybrook Purification: It has created a thin, fibrous scaffold for reverse osmosis membranes that increases water flow to the reverse osmosis membrane. The company, out of SUNY Stony Brook, also has its own reverse osmosis membrane.

Suntan Tells You Capacitor Maker Lelon Cuts Into Wind Power Market

Suntan Technology Company Limited
---All Kinds of Capacitors

Aluminum electrolytic capacitor maker Lelon Electronics has seen extra orders from China appliance makers due to the China government's program to promote sales of home appliances in rural areas. The extra orders have covered Lelon's reduced orders from the US and Europe, the company said.

The price of aluminum electrolytic capacitors has been stable since August 2008, while the price of aluminum foil continues to drop, lowering Lelon's cost pressure. However, order visibility for aluminum electrolytic capacitors is still low, the company noted.

Lelon has entered the wind power market with its large-size capacitors, and plans to apply the product to other applications. The company has already shipped a small volume of large-size capacitors to a motorcycle maker and expects to expand into the automotive segment.

Su Suntan NIC Components Launches New Film Chip Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

NIC Components has unveiled a new range of film chip capacitors which are designed to offer stable characteristics over a wide operating temperature range.

The NSMX series of wound, metallised polyphenylene sulphide film capacitors can be used in applications that require low-absorption characteristics.

According to the company, they are suitable for use in power supplies requiring low-loss parameters.

The product has an operating temperature range of -40 degrees c to 125 degrees c and is RoHS compliant.

NSMX series is also compatible with the latest SAC reflow soldering processes up to 260 degrees c.

The firm states that it has very stable temperature, frequency, voltage, bias and dielectric absorption, with ElectronicsTalk stating that this makes them an alternative to other dielectrics such as MLCCs.

Meanwhile, Vishay recently announced the release of three new X2 electromagnetic interference suppression film capacitors, which it claims offer an increased voltage rating while continuing to meet safety approvals.

Rapid Electronics are a leading UK supplier of electronic components, electrical products and industrial equipment to the Assembly Manufacturer sector.

Su Suntan Introduce What is Gold Capacitor

Suntan Technology Company Limited
---All kinds of Capacitors

What is Gold Capacitor

  • The storage cell that used absorption/release reaction of ions
  • ...

Tantalum capacitor price set to rise

Tantalum capacitor could cost more as raw material prices react to the closure of Australian mines.

"The suspension of tantalum production at the Wodgina mine means that the industry is entering uncertain times for tantalum," said Edmund Coady, sales director of component distributor Charcroft Electronics. "Capacitor manufacturers can renew their contracts with the tantalum powder manufacturers and accept a significant price increase in return for a reliable and continuous source of supply, or they can play a waiting game."